Polynomial interpolation and cubature over polygons
نویسندگان
چکیده
We have implemented a Matlab code to compute Discrete Extremal Sets (of Fekete and Leja type) on convex or concave polygons, together with the corresponding interpolatory cubature formulas. The method works by QR and LU factorizations of rectangular Vandermonde matrices on Weakly Admissible Meshes (WAMs) of polygons, constructed by polygon quadrangulation. 2000 AMS subject classification: 65D05, 65D32.
منابع مشابه
Gaussian Cubature and Bivariate Polynomial Interpolation
Gaussian cubature is used to study bivariate polynomial interpolation based on the common zeros of quasi-orthogonal polynomials.
متن کاملOn minimal cubature formulae for product weight functions 1
We derive in a simple way certain minimal cubature formulae, obtained by Morrow and Patterson [2], and Xu [4], using a different technique. We also obtain in explicit form new near minimal cubature formulae. Then, as a corollary, we get a compact expression for the bivariate Lagrange interpolation polynomials, based on the nodes of the cubature.
متن کاملA numerical code for fast interpolation and cubature at the Padua points
In this talk we discuss an efficient implementation in Matlab/Octave of bivariate interpolation and cubature at the so-called Padua points. Such points are the first known example of optimal points for total degree polynomial interpolation in two variables, with a Lebesgue constant increasing like log square of the degree; see [1, 2, 4, 5]. Moreover, the associated algebraic cubature formula ha...
متن کاملGauss-Green cubature over spline curvilinear polygons
We have implemented in Matlab a Gauss-like cubature formula over bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n− 1 using N ∼ cmn nodes, 1 ≤ c ≤ p, m being the total number of points given on the boundary. It does not need any decomposition of the domain,...
متن کاملPolynomial approximation and cubature at approximate Fekete and Leja points of the cylinder
The paper deals with polynomial interpolation, least-square approximation and cubature of functions defined on the rectangular cylinder, K = D × [−1, 1], with D the unit disk. The nodes used for these processes are the Approximate Fekete Points (AFP) and the Discrete Leja Points (DLP) extracted from suitable Weakly Admissible Meshes (WAMs) of the cylinder. ¿From the analysis of the growth of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 235 شماره
صفحات -
تاریخ انتشار 2011